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Gaussian process analysis of processes with multiple outputs is limited by the fact that far fewer good classes of covari-
ance functions exist compared with the scalar (single-output) case. To address this difficulty, we turn to covariance
function models that take a form consistent in some sense with physical laws that govern the underlying simulated pro-
cess. Models that incorporate such information are suitable when performing uncertainty quantification or inferences
on multidimensional processes with partially known relationships among different variables, also known as co-kriging.
One example is in atmospheric dynamics where pressure and wind speed are driven by geostrophic assumptions (wind
∝ ∂/∂x pressure). In this study we develop both analytical and numerical auto-covariance and cross-covariance models
that are consistent with physical constraints or can incorporate automatically sensible assumptions about the process
that generated the data. We also determine high-order closures, which are required for nonlinear dependencies among
the observables. We use these models to study Gaussian process regression for processes with multiple outputs and
latent processes (i.e., processes that are not directly observed and predicted but interrelate the output quantities). Our
results demonstrate the effectiveness of the approach on both synthetic and real data sets.
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1. INTRODUCTION

In this work, we explore Gaussian process (GP) regression [1–4] for models driven by physical principles in general
and for regression and state estimations, in particular. Predictions and spatial interpolation (kriging) using GPs is a
well-established technique [1, 5, 6]. Inferences on processes with multiple outputs, the topic of particular interest in
this work, is known as co-kriging [5, 7] or multikriging [8]. Here, we focus on spatial processes; nonetheless, GPs
can also be used in a time-dependent context processes [9–13] or in a spatio-temporal context [14].

One of the important operational decisions in uncertainty quantification, and in particular in carrying out Gaussian
process analysis, is the choice of covariance functions. For kriging for scalar (single-output) fields several well-
understood practical and theoretical guidelines exist [3, 5]. However, with multiple outputs it is difficult to describe
the process in order to correctly structure the outputs and ensure positive definitiveness [3]. One approach is introduced
by [8, 15] in which smoothing kernels are used to train how the outputs covary.

The difficulty of finding “good” covariance models for multiple outputs can have important practical conse-
quences. An incorrect structure of the covariance matrix can significantly reduce the efficiency of the uncertainty
quantification process, as well as the forecast efficiency in kriging inferences [16]. Therefore, we argue, the covari-
ance model may play an even more profound role in co-kriging [7, 17]. This argument applies when the covariance
structure is inferred from data, as is typically the case. Such studies as the ones discussed in [7, 17] have been repli-
cated by [18–20] and channeled toward constructing compact kernels, which are positive functions with compact
support that avoid matrix storage issues; although no connection was made between the two sets of studies. For ex-
ample, in [16] poor results were obtained when an isotropic model was used instead of a more appropriate anisotropic
one. We expect the situation to be even more critical for systems with outputs that have “different” physical meanings.

1



2 E.M. Constantinescu & M. Anitescu

In this case the auto- and cross-covariance models [7] determine the efficiency of the kriging process.
The aim of this work is to obtain covariance functions for multivariate processes by using information about the

physics of the process. The regime of interest here is the one where there exists sufficient information about the
physics of the process to generate suitable covariance functions, but there is not be enough information to use the
mathematical equations directly (for example, boundary or initial conditions may be unknown, but observations of the
process are available).

In statistics, physical intuition is often employed directly or indirectly in solving inference problems. A typical
strategy to include ab initio knowledge about a real system governed by known (in part) physical laws is hierarchical
Bayesian modeling [21, 22]. Specific examples include geophysical processes [7], atmospheric modeling [23–26]
and environmental sciences [24, 27–30]. The physical component of the problem is typically oversimplified in order
to allow tractable computations. Relevant studies for this work include [7, 18, 25, 26, 31–33], in which the authors
include certain levels of particular physical properties in the covariance structure. Auto- and cross-covariance models
induced from such processes present in hydrogeology or driven from stochastic differential equations are discussed
in [7, 26]. In [34] correlation functions are inferred from specific linear PDEs. Apanasovich et al. [35] propose
cross-covariance functions for multivariate random fields obtained by a multidimensional extension of existing uni-
variate models. Gneiting et al. [36] introduce multivariate Matérn cross-covariance functions that allow each process
component to maintain different smoothness properties. Constructing covariance functions that preserve liquid incom-
pressibility via the divergence operator is discussed in [37]. In this study, we extend and generalize previous results
by providing a general framework for assembling consistent auto- and cross-covariance models that are asymptoti-
cally consistent with functional constraints that may depend both on the covariates and on observations. The setup
comprises of multiple observed outputs, with underlying processes that constrain the data. This setup also extends to
processes that are not necessarily directly observed. We term the latter as a hidden process model, which is a parallel
to hidden (latent) Markov chain models.

In addition to deriving a systematic approach for describing the construction of covariance models governed by
linear processes, we ask what happens if the process is not linear. We find that high-order closures are necessary to
correctly specify the resulting covariance models. Moreover, the strategy that we introduce in this study provides a
physically consistent approach to introduce nonstationarity in the structure of the covariance matrix.

In this study we focus on Bayesian linear regression with normally distributed forcings, where the response (vec-
tor) variables yi are functions of covariates x, which in our case and without loss of generality are considered locations
in space. In addition, we consider that there is a relationship among the m output fields, each of dimension ni, that is
driven by an underlying physical process:

0nm = f(y1, y2, . . . , ym) +ψ , (1)

where n =
∑

i ni, 0nm is a vector of zeros, yi ∈ Rni , f : Rnm → Rnm, is a physical deterministic model that
connects the different physical quantities yi, and ψ is a stochastic forcing (random vector) that accounts for the dif-
ference between our knowledge of the physical process and the real one. One example is steady-state calculations for
fluid dynamics problems, where yi may represent mass, momentum, and energy; and ψ corresponds to the departure
of the real model from the idealized one. Another example is given by imposing a divergence-free constraint on a
multidimensional field, such as liquid incompressibility discussed in [37]. We call physical model (1) separable if we
can write it as

y1 = f1(y1, y2, . . . , ym) +ψ1

y2 = f2(y1, y2, . . . , ym) +ψ2

. . . = . . .
ym = fm(y1, y2, . . . , ym) +ψm

, (2)

where [fT
1 , fT

2 , . . . , fT
m]T = f and [ψT

1 , ψ
T
2 , . . . , ψ

T
m]T = ψ. This is not to be confused with separable covari-

ance models. These situations occur, for instance, in implicit temporal discretization of PDEs, where the subscript
represents the time index. A separable model (2) is explicit if we can write it as yi = fi(yj1 , yj2 , . . . , yjd), where
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i = 1, . . . ,m, jk ∈ J \{i} is an index set that does not contain i. In other words we can write (2) as

yi = gi({y1, . . . , ym}/{yi}) +ψ , (3)

where g is an explicit model of a known physical process that governs some yi variables. Henceforth we will denote
by g explicit functions as defined above. One example is the geostrophic wind approximation u = k × 1

ρc∇p [38]
where in (3) the wind speed u takes the role of y1, and the pressure p of y2. This example will be used later in this
study. For a relevant use of gradients in kriging see [39].

Two types of models are considered in order to simplify the presentation of the theoretical discussion: an implicit
separable one, which for exposition brevity will generally be defined on two random fields,[

y1
y2

]
= f(y1, y2) +ψ =

[
f1(y1, y2) +ψ1

f2(y1, y2) +ψ2

]
, (4)

and an explicit one defined by

y1 = g(y2) + η , (5)

where we assume that y1 and y2 are n-dimensional random fields, g and f are continuous (non)linear mappings
sufficiently regular, and ψ ∼ N (mψ,Kψ) and η ∼ N (mη,Kη) are random (forcing) vectors that have the same role
as defined in (1).

Covariance modeling for GP regression with multiple outputs can be roughly classified in three situations, depend-
ing on the amount of information one has about the data source or process. In the first case, the variables (outputs) are
known or assumed to be mutually independent, and thus the system can be decoupled and solved separately as two or
more unrelated problems. In the second case, we assume that the processes are correlated, but we have no information
about the correlation function. In this case, a model can be proposed, or nonparametric inferences can be carried out.
In the third situation, we assume that the outputs have a known relationship among them, such as (4) and (5); then the
question is how to include this information in the covariance model. The last point forms the scope of this study.

The rest of this paper is organized as follows. We next introduce covariance models and functions that are based
on differentiable functions. In Section 2.2 we discuss the implications of using nonlinear relationships and provide
high-order closures for the nonlinear models. Analytic auto- and cross-covariance functions are introduced in Section
2.3. Extensive numerical and validation experiments are described in Sec. 3. We conclude with some final remarks.

2. MULTIDIMENSIONAL COVARIANCE MODELS AND FUNCTIONS

In the following section we present models for multidimensional covariance matrices with different closure assump-
tions. We also introduce analytic forms for covariance functions that fall into the scope of this study.

2.1 Multidimensional Covariance Models

Let us denote the mathematical expectation E {y} by y and small perturbations around the expected value by δy =

y − y. We denote the covariance of two random vectors as Cov(yi, yj) = δyiδyTj and in more compact form as Kij .
The following lemma introduces a covariance model for a process with two distinct types of outputs that are related
through such a function as described in (5), y1 = g(y2) + η.

Lemma 2.1. [Covariance models for explicit processes]
If two processes y1 and y2 satisfy a physical constraint given by (5) with g(·) ∈ C2, and Cov(y2, y2) = K22, then the
covariance matrix formed by the elements of the two vectors satisfies

Cov
(
[yT1 , y

T
2 ]

T
)
= (6)[

LK22L
T + LCov(y2,η) + Cov(η, y2)L

T +Cov(η,η) LK22 +Cov(η, y2)
K22L

T +Cov(y2,η) K22

]
+O

(
δy32

)
,

where L = ∂g
∂y

∣∣∣
y=y

is the Jacobian matrix of g evaluated at E {y2}.
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Proof. The Taylor expansion of g(y2) about E {y2} gives

g(y2) = g(y2) + Lδy2 +
1

2
δyT2 Hy2 +O

(
δy32

)
,

where H = ∂2g
∂y2

∣∣∣
y=y

. Take the expectation of (5):

y1 = g(y2) + η = g(y2) +
1

2
δyT2 Hδy2 +O (δy32) + η , (7)

= g(y2) +
1

2
tr(HCov(y2, y2)) +O (δy32) + η ,

where the last line is obtained by using the properties of the trace (tr(A) =
∑

Aii) and expectation operators.
Equation (7) represents an estimator for the mean process. Subtract (5) from (7), expand g(y2), postmultiply by δyT2 ,
and take the expectation on both sides:

δy1δyT2 = Lδy2δyT2 +

(
1

2
δyT2 Hδy2 −

1

2
δyT2 Hδy2

)
δyT2 +

(
O (δy32)−O (δy32)

)
δyT2 + δη δyT2 .

To obtain the cross-covariance block in the right-hand side of (6), we close the system by eliminating terms of O
(
δy32

)
,

and obtain

Cov(y1, y2) = LCov(y2, y2) + Cov(η, y2) ,

or in short K12 = LK22 +Kη2. To compute K11, we apply a similar procedure and obtain (6).
Next we have to show that covariance model (6) is an admissible covariance matrix, that is, Cov

(
[yT1 , y

T
2 ]

T
)

is
symmetric positive definite. A symmetric matrix is positive definite if and only if a subblock and its Schur complement
are both positive definite. This can be shown by using minimization of quadratic forms [40] or exploiting properties of
determinants [41]. If we pick K22 and its Schur complement S = (LK22L

T +LK2,η+Kη,2L
T +Kηη)− (LK22+

Kη,2)K
−1
22 (LK22 +Kη,2)

T , we have that

S = Kηη −Kη,2K
−1
22 KT

η,2 , (8)

which is positive definite because the expression of S in (8) is also the Schur complement of K22 from

Cov
(
[ηT , yT2 ]

T
)
=

[
Kη,η Kη,2
K2,η K22

]
, (9)

which is by construction an admissible covariance matrix. This also results from the marginalization property of
Gaussian processes.

Note that in (6) we write the joint covariance matrix in terms of K22 and noise components, but in practice K22

is not necessarily known. Nonetheless, by using the covariance form introduced in Lemma 2.1, the inference process
fits only the parameters of K22 and noise for all dependent fields. We also remark that if g is nonlinear in y, L may
depend on the mean (value process). The process of ignoring the terms O

(
δy32

)
and of higher order in (7) will be

referred to as second-order closure assumption.
The procedure outlined above can also be used to derive analytic closed forms for covariance and cross-covariance

functions driven by linear and nonlinear (physics) operators. A few examples for squared exponential and the more
general Matérn functions [5] are discussed in Sec. 2.3 and shown in Figure 1 for two linear operators (g(y) = [∂/∂x] y
and g(y) = [∂2/∂x2] y) and a quadratic one (g(y) = y2).

In the following proposition generalize the result introduced by Lemma 2.1 to implicit separable systems.
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Proposition 2.2. [Covariance models for implicit processes]
Consider a process driven by the implicit separable system (2). Then under the second-order closure assumptions the
block covariance matrix elements satisfy the following simultaneous algebraic equations:

K = LKLT + LKyψ +KψyLT +Kψψ , (K)ij = Kij = Cov(yi, yj) , (L)ij = Lij =
∂fi
∂yj

. (10)

In addition, given K22 and if (I − L11) is invertible, then for the reduced system (4), the following hold:

K11 = L11K11L
T
11 + L12

(
(I − L11)

−1(L12K22 +Kψ1,2)
)T

LT
11+ (11)

L11

(
(I − L11)

−1(L12K22 +Kψ1,2)
)
LT
12 + L12K22L

T
12+

Kψ1,1L
T
11 +Kψ1,2L

T
12 + L11K1,ψ1 + L12K2,ψ1 +Kψ1ψ1 ,

K12 = (I − L11)
−1(L12K22 +Kψ1,2) . (12)

Proof. We use Lemma 2.1 and the chain rule on (2). We illustrate the calculations on the system with two vector
components (4). The following relations are obtained:

fi(y1, y2) = fi(y1, y2) + Li1δy1 + Li2δy2 +O
(
δy2

)
,

yi = fi(y1, y2) +O
(
δy2

)
+ψi ,

δyi = Li1δy1 + Li2δy2 + δψi ,

where i = 1, 2 and the second line is obtained from the first and (2). Then under the second-order closure assumptions
and by using the same procedure in Lemma 2.1, one obtains

K12 = δy1δyT2 = L11K12 + L12K22 +Kψ1,2 .

If (I − L11) is invertible, then one obtains (12). It can be shown that K11 satisfies

δy1δyT1 = L11K11L
T
11 + L12K21L

T
11 + L11K12L

T
12 + L12K22L

T
12+

Kψ1,1L
T
11 +Kψ1,2L

T
12 + L11K1,ψ1 + L12K2,ψ1 +Kψ1ψ1 .

Then the substitution of K12 in (12) yields (11). The terms can be collected and expressed as in (10). Relation (11) is
obtained by eliminating K12 from (10).

We remark that, in general, cross-covariances involving y2 and the forcing ψ are difficult to specify. Nevertheless,
we consider it important to preserve such terms in order to have a complete representation of the problem. In our
numerical experiments, however, we will treat these terms as zero.

The procedure in Proposition 2.2 can also be interpreted as an extension of the Delta method procedure [42, 43].
We also note the agreement between (10) and the results presented in [18], in which a particular hyperbolic PDE-
driven process is explored. Thus far we have assumed that the physical constraint is exactly or well approximated
by the first derivative, implying that the physics is approximately well represented by its linearization. If this is
not the case, then higher-moment closures for a Gaussian processes can be explored [44]. Alternatively, closure for
non-Gaussian distributions are discussed in [45–47].

2.2 High-Order Closures

Closures with higher-order moments can lead to more accurate models for nonlinear processes. We now develop the
covariance model with third-order closure of the error truncation terms for problem (5).

To use high-order expansions, we will use tensor algebra with the following conventions. The Hessian tensor of
g(y) is given by a rank-three tensor Hijk =

∂2gj(y)
∂yi∂yk

. The transpose of a tensor is obtained by permuting the first
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and last indices: (Hijk)
T = Hkji. The trace of a rank-three tensor is a tensor contraction to a (rank-one tensor or a)

vector defined as tr(H) = {
∑

ik Hijkδik}j . The product of a rank-three tensor with a matrix is defined in the usual
dot product sense, resulting in a rank-three tensor. By using these conventions we can represent the algebraic relations
in this section using rules that mimic the scalar-valued function case.

Proposition 2.3. [Covariance models with high-order closures]
Consider a process driven by (5). Then under the third-order closure assumptions, its covariance matrix takes the
following form:

Cov
(
[yT1 , y

T
2 ]

T
)
=

[
K11 LK22 +Cov(η, y2)

K22L
T +Cov(y2,η) K22

]
+O

(
δy32

)
, (13)

where L is the Jacobian matrix, H is the Hessian tensor corresponding to g evaluated at E {y2}, and

K11 = KI
11 +

1

4
δyT2 Hδy2δy

T
2 H

T δy2 −
1

4
tr(HK22)tr(HK22)

T +
1

2
δyT2 Hδy2η

T +
1

2
δηδyT2 H

T δy2 , (14)

where KI
11 is the corresponding term using second-order closure assumptions.

Proof. The Hessian is a symmetric operator in the sense defined above (H = HT ) because we assume that g is a
smooth function. We therefore have

δy1 =Lδy2 +

(
1

2
δyT2 Hδy2 −

1

2
δyT2 Hδy2

)
+
(
O
(
δy32

)
−O (δy32)

)
+ δη ,

δy1δy
T
2 =Lδy2δy

T
2 +

1

2
δyT2 Hδy2δy

T
2 − 1

2
tr(HK22)δy

T
2 + δηδyT2 ,

K12 =LK22 +
1

2
δyT2 Hδy2δy

T
2 +Kη2 = KI

12 ,

where δyT2 Hδy2δy
T
2 has only third-order central moments and is therefore zero (for Normals), and KI

12 is the second-
order approximation of the cross-covariance.

Block K11 follows as

K11 =KI
11 +

1

2
Lδy2δyT2 H

T δy2 +
1

2
δyT2 Hδy2δy

T
2 L

T +
1

4
δyT2 Hδy2δy

T
2 H

T δy2

− 1

4
tr(HK22)tr(HK22)

T +
1

2
δyT2 Hδy2η

T − 1

4
tr(HK22)tr(HK22)

T

+
1

4
tr(HK22)tr(HK22)

T +
1

2
δηδyT2 H

T δy2 ,

where KI
11 is given by (6). Then K11 reduces to

K11 =KI
11 +

1

4
δyT2 Hδy2δy

T
2 H

T δy2 −
1

4
tr(HK22)tr(HK22)

T (15)

+
1

2
δyT2 Hδy2η

T +
1

2
δηδyT2 H

T δy2 .

We see that relaxing the closure assumptions does not complicate the structure of entire covariance matrix; how-
ever, block K11 appears to present computational difficulties. Nonetheless, by using the relation among moments in
Normal distributions, we observe that the quartic term in (15), which is potentially the most difficult term to calculate,
can be factorized in terms of entries in K22 [48]:

(δy2(i))4 = 3K2
22(i, i)

(δy2(i))2(δy2(j))2 = K22(i, i) ·K22(j, j) + 2K2
22(i, j) .
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Such models are exact for quadratic processes such as the derivatives occurring in Burgers equations; that is, ∂y2/∂x
or y ∂y/∂x for solution y(x). For more complicated problems, truncated model (13) represents an approximation of
the covariance matrix by accounting for a one-way action of high-order moments. In Section 3.2 we provide a simple
but illustrative example in which the high-order closure assumptions lead to a more robust matrix structure.

2.3 Auto- and Cross-Covariance Functions

We now focus on the analytic forms of the covariance functions that are used to generate the covariance matrices
discussed above. The analytical covariance functions provide distinct theoretical and practical advantages by allowing
the design of grid-independent covariance structures and facilitating a rigorous asymptotic analysis. By using the same
calculation procedures we arrive at several covariance models. However, because the analytic forms depend on the
covariance function of the independent process (i.e., K22, y2) and the expression that relates it to the dependent one
(i.e., g), we limit our results to a few processes. In Figure 1 we present the auto- and cross-covariance functions
for processes driven by the following: y1 = ∂

∂xy2, y1 = ∂2

∂x2 y2, and y1 = y22 ; these functions may correspond to
processes such as pressure-wind, diffusion, or force-acceleration, respectively. In every case y2 is modeled either by
squared exponential or by Matérn covariance functions. These results can be obtained by using the intermediate steps
in the proof of Lemma 2.1 or can be derived from their characteristic functions by differentiating the kernels in the
Fourier space; see [5].

Another strategy to arrive at the same results is the following. We assume that the y2 process is weakly stationary
and sufficiently mean-square differentiable (in the Matérn case) and all metrics and multiplicative factors are positive
[5]. Then, with the standard kriging notation, we recover the results presented in [5] for the mean square differentiable
process Z(x1, x2) and for which one obtains the auto-covariance function of the differentiated process as kŻ(d) =
−k′′(d), where d = |x1−x2| (absolute value) and k(d) = Cov(Z,Z). A similar strategy, but in a different coordinate
system, is described in [7, 17, 26]. In this simple case, the Fourier transform of the covariance function can also be
used to compute the resulting auto- and cross-correlation functions; however, some functionals (processes and kernels)
may lead to difficult calculations and the contribution of higher order moments would be more difficult to assess.

The linear processes lead to simple auto- and cross-covariance functions. In the nonlinear case the kernel takes a
parametric form that depends on the mean value process, which comes at no surprise. In the top part of the Fig. 1 we
illustrate the square exponential covariance function and the generated auto- and cross-covariances. We also present a
graphical illustration of the kernels for scalar variables with some fixed coefficients, and a three-dimensional (matrix)
representation of K22, with variance equal to two. The auto-covariance functions need to be positive definite, and
for reference in the “Gaussian” kernel case we also give their respective Fourier transform, f(ω). The lower part
of Figure 1 presents the same results for the Matérn functions. A numerical validation of the covariance functions
described in Figure 1 is given in Section 3.2.
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3. NUMERICAL EXPERIMENTS AND VALIDATION

In this section we provide a numerical illustration of the theoretical considerations introduced in the preceding sec-
tions. We begin with a numerical validation of the new covariance models and present a few nonstationarity consid-
erations. We continue with applying the theoretical considerations introduced in this study to one-dimensional spatial
interpolation experiments. Here we perform several Gaussian process linear regression experiments under a controlled
setting. In the section that follows we investigate linear regression using the covariance models on a two-dimensional
problem that is based on a real data set.

In all the regression experiments the inference process carried with the covariance models introduced in this study
is compared with an independent fit of the different quantities. This approach is intended to expose the efficiency
gains when the covariance structure is properly specified.

3.1 One-Dimensional Model Process

We first introduce a problem inspired by the geostrophic balance (atmosphere in equilibrium) [38], which relates wind
speed and pressure after a series of approximations: wind ∝ ∂/∂x pressure, and therefore g(·) = ∂

∂x ·. To give more
physical intuition, we use u for wind and p for pressure. For this model we evaluate the following example:

p ∼ N (0, Cse) , x ∈ [−1, 1] , ∆x = 2/100 ,

u =
∂p

∂x
, g(p) =

∂

∂x
p ,

(16)

where Cse(i, j) = σ2 exp
(
−1

2
(x(i)−x(j))2

ℓ2

)
. For our synthetic example we take ℓ = ℓ2 = 7∆x/

√
2. We also

consider diffusion, g(y) = ∂2

∂x2 y, as well as a nonlinear operator, g(y) = y2, which are both in C2.
For regression problems we consider the following bivariate one-dimensional model:

y =

[
y1
y2

]
=

[
u(x)
p(x)

]
, x ∈ [−1, 1] , xi = 2∆x i− 1 , i = 1, . . . , 100 , ∆x = 2/100 , (17)

y1 = u(x) = g(p(x)) = α
∂

∂x
p(x) + η , η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η])) , Cov(y2,η) ≡ 0 , (18)

y2 = p(x) ∼ N (0, Cse([ℓ2,σ
2
2])) , (19)

where u represents the wind field, p takes the place of the pressure, and Cmat,ν=5/2 is the Matérn covariance function
with the corresponding smoothness. This process is observed at various grid points fi with an additive Normal noise
ε, that is, [

f1
f2

]
= Hy

[
y1
y2

]
+

[
ε1
ε2

]
, εi = N (0,σ2n,iI) , (20)

where Hy represents an observation operator that picks values corresponding to selected grid points. In this case the
Jacobian matrix corresponds to a differential operator, L = α ∂

∂x .
We note that the particular form of processes described by (16) and (17)-(20) is rather general and common in

practice, where one may find observations that represent the state and their derivatives (in space) also called tendencies
in the atmospheric sciences [17, 25, 26, 38].

3.2 Validation: Examples of Covariance Models

We begin by considering the set of governing equations presented in Figure 1 and calculate the cross- and auto-
covariance functions for each case for the two-dimensional kernel K22 represented therein. The analytical results are
contrasted with sample-based covariance estimation.

In Figure 2 we show the auto-covariance (K11) and cross-covariance (K12) obtained from 10,000 samples as
well as the analytical model that corresponds to (17)-(20). Observe the almost perfect resemblance as well as the
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FIG. 2: Auto-covariance and cross-covariance matrices obtained using a first-order derivative physics model: y1 =
u(x) = g(p(x)) = α ∂

∂xp + η, y2 = p ∼ N (0, Cse([ℓ2,σ
2
2])) and η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η])). The results in

(a, c) are obtained by using the physics-based approach, that is Lemma 2.1, and the results in (b, d) are obtained by
sample approximation based on 10,000 simulations.
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10,000 simulations.

equivalence among these realizations and the analytic kernels described in the upper segment of Figure 1. In Figure
3 we illustrate the sample-based and analytic covariance matrices for the diffusion process. The same number of
samples was used as before. The relatively small difference between the two approximations can be attributed to
sampling noise; that is, increasing the number of samples reduced the size of the difference. Of course, because the
model is linear, we expect the formula to be exact. The L operator is obtained from a finite difference approximation
of g; the two approximations considered here and throughout this study are y′(x) ≈ (y(xi+1) − y(xi)/∆x) and
y′′(x) ≈ (y(xi+1) − 2y(xi) + y(xi−1))/∆x2). We note that in this case samples from the exact distribution can be
drawn and it is not necessary to use a finite difference approximation; however, we attempt to replicate a setting in
which the samples resulting from other processes are not as easily obtained.

We now discuss results obtained by using the covariance matrix model with high-order closure assumptions as
given by Proposition 2.2 and the one based on the second-order closure as described in Lemma 2.1 that correspond to
the quadratic process y1 = y22 +η. In this case (as explained by (14)) K11 differs between the two covariance models;
however, K12 is practically unchanged. We therefore focus on K11, and in Figure 4 we illustrate the absolute errors
in the covariance matrix entries between the quadratic and cubic covariance matrix models and two sample-based
approximations using 10,000 and 50,000 samples. The error levels estimated by using 10,000 samples are relatively
similar between the two matrix models; however, we note that when increasing the number of samples used for the
error estimate, the quadratic model shows significantly smaller errors. The latter indicates that the high-order closure
provides a more robust covariance matrix approximation in this case.

This set of three experiments corresponds to the particular setting described in Figure 1 and illustrates the theoret-
ical statements presented in Propositions 2.2 and 2.3.

International Journal for Uncertainty Quantification
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FIG. 4: Pointwise errors in the auto-covariance (K11) for a quadratic (physics) model: y1 = y22 + η, y2 ∼
N (6, Cse([ℓ2,σ

2
2])) and η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η])), by using (a, b) 10,000 samples and (c, d) 50,000 sam-

ples. We show the error estimates for two covariance models that correspond to (a, c) a quadratic closure assumption
(6) and (b, d) a cubic closure assumption (10) of the physical process. The error is calculated as the absolute pointwise
difference between the corresponding sample-based covariance estimate and the physics-based one. We note that im-
proving the accuracy of the sample error estimate yields a significantly reduced error in the covariance matrix entries
for the cubicly truncated model.

3.3 Physics-Induced Nonstationarity

As discussed in the introductory part of this study, nonstationary covariance models are generally difficult to construct,
and typical strategies rely on changing smoothing properties or correlation distances in different directions. We now
briefly discuss nonstationary models induced in the covariance structure through procedures introduced in this study.
For brevity we present a one-dimensional case with one variable; nonetheless, this strategy can be extended to multiple
variables and dimensions and is applicable on all the following examples. A situation in which no stationary models
are suitable occurs when the domain geometry (or topology) is not uniform, such as shallow-water approximations
and subsurface flows.

We consider the first-order differential model in space y1 = a(x)y2(x)
′, where a(x), for instance, represents a

constraint or a mapping from an irregular grid to a regular one. From Lemma 2.1 it follows that K11 = LK22L
T ,

where L is the spatial differential operator discretized as y(xi) = a(xi) ∗ (y(xi)− y(xi−1))/∆x; alternatively a(x),
can take the place of a fixed ∆x.

In Figure 5.a we illustrate samples drawn from distributions induced from the differential operator with spatial
variability. In one case we consider a(x) to be a fixed value; in the other in an ad hoc manner we choose a(x) to be

a(x) =
3

2
+ sin

(
1 +

xπ

N

)2

+

(
1

2
+
( x

N

)3
)
cos

(
1 +

15xπ

N

)
, (21)

where N is the number of grid points. The induced covariance K11, shown in Fig. 5.b, and ten samples drawn
from K11 with a(x) = 1 and with a(x) defined by (21) are contrasted in Figures 5.c and 5.d, respectively. We can
also interpret a(x) to be the reciprocal of the fixed grid spacing ∆x. The samples in Fig. 5.c have a noticeable
spatial structure induced in terms of length scale and variance through the use of a(x). In particular, note the sample
“clamping” that takes place around grid point 90 and the relative wavy structure of the weighting function that can be
seen in the sample behavior.

Note also that the nonstationarity is introduced directly in the discretization of the physical process and therefore
provides a more consistent structure than does treating the physics and coordinate transformations separately.

3.4 GP Regression Using Physics-based Covariance Models

We compute the joint distribution and posterior applied in a GP regression problem with multiple outputs. The central
example is the geostrophic wind (17)-(20); nonetheless, we also illustrate GP regression results for systems governed
by other processes. Henceforth, quantities subscript ∗ (◦∗) represent predictions.
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show ten samples from K11 obtained with a(x) = 1 and with (21), respectively.

3.4.1 Gaussian Process Regression

In this section we consider Cov(y2,η) = 0 and make predictions for y1(x∗) = y∗1 and y2(x∗) = y∗2. The joint
distribution corresponding to problem (17)-(20) is given by Lemma 2.1:

y1
y2
y∗1
y∗2

 ∼ N




g(y2) +
1
2 tr(HK22)
y2

g(y∗2) +
1
2 tr(HK∗2,∗2)
y∗2

 , (22)


LK22L

T +Kηη LK22 LK2,∗2L
T +Kη,∗η LK∗2,∗2

K22L
T K22 K2,∗2L

T K2,∗2
LK∗2,2L

T +K∗η,η LK∗2,2 LK∗2,∗2L
T +K∗η,∗η LK∗2,∗2

K∗2,∗2L
T KT

2,∗2 K∗2,∗2L
T K∗2,∗2

+

[
Σ 0
0 0

] ,

Σ =

[
Kε1ε1 0

0 Kε2ε2

]
=

[
σ2n,1I 0
0 σ2n,2I

]
,

where matrix Σ represents the noise in observations.
The predictive distribution is then obtained as a normal distribution with expectation and covariance matrix given

by [3]

y∗|X,X∗,y = m(X∗) +K21 (K11 +Σ)
−1

(y −m(X)) ,

Cov(y∗|X,X∗,y) = K22 −K21 (K11 +Σ)
−1

K12 ,

where X represents the covariates, y the responses, ◦∗ the corresponding predictions, and K is the covariance matrix
in (22) with blocks K11, K12, K21, K22. The covariance matrix depends on several parameters, also known as
hyperparameters. To fit the hyperparameters in the covariance model, we use a Newton-based strategy to maximize
the marginal log-likelihood expression (or evidence) [3]:

log(P (y|X,θ)) = −1

2
(y −m(X))

T
(K11 +Σ)

−1
(y −m(X))− 1

2
log |K11 +Σ| − n2

2
log(2π) ,

with its gradient given by

∂

∂θj
logP (y|X, θ) =

1

2
(y −m(X))

T
K−1 ∂K

∂θj
K−1 (y −m(X))− 1

2
tr

(
K−1 ∂K

∂θj

)
, (23)

=
1

2
tr

(
(ααT −K−1)

∂K

∂θj

)
; α = K−1 (y −m(X)) .

We consider a more general framework that includes observational operators. We define two mappings from
the observation space to the prediction space, H1,∗1 : Rn∗1 → Rn1 and H2,∗2 : Rn∗2 → Rn2 , as well as their
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linearizations H1,∗1 and H2,∗2, respectively. Let us also consider n∗1 ≫ n1 and n∗2 ≫ n2, which correspond to
having sparse observations relative to predictions. For instance, if x1 = [1, 2, 3]T and x∗1 = [2, 3]T , then H1,∗1 =[

0 1 0
0 0 1

]T
. We also consider the Jacobian matrix L(= L∗1,∗2) to be a well-defined mapping L : Rn∗2 → Rn∗1

introduced in Lemma 2.1 as well as its projection to the observation space L1,∗2 = H1,∗1L∗1,∗2. The elements in the
joint distribution can be computed as follows:

K11 =

[
L1,∗2K∗2,∗2L

T
1,∗2 +Kηη L1,∗2K∗2,∗2H

T
2,∗2

H2,∗2K∗2,∗2L
T
1,∗2 K2,2

]
,

K12 =

[
L1,∗2K∗2,∗2L

T +Kη,∗η L1,∗2K∗2,∗2
H2,∗2K∗2,∗2L

T K2,∗2

]
, K21 = KT

12 ,

K22 =

[
LTK∗2,∗2L+K∗η,∗η LTK∗2,∗2

(LK∗2,∗2)
T

K∗2,∗2

]
.

We consider the following hyperparameters for problem (17)-(20): θ = {ℓ2, ℓη, σ22, σ2η, σ2n,1, σ2n,2}. These
correspond to K22 (also to K∗2,∗2), Kηη (also to K∗η,∗η), and Σ.

In the following sections we present numerical results for Gaussian process regression experiments. We use the
setup described in Sec. 3.1; however, we consider different processes g of increasing complexity. In all experiments
we consider the noise in the data to be σ2n = 0.2 and the noise in the physical process to be σ2η = 0.1.

3.4.2 Simple Linear Process

In Figure 6.a we present the independent and joint fit of two Gaussian processes for the linear problem y1 = y2 + η,
y2 ∼ N (0, Cse([ℓ2,σ

2
2])), and η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η])). This means that y1 is a noisy representation of y2.

The two processes are on the same grid (“x”). The GP model with the joint fit collects observational information from
both covariates when computing the posterior and therefore gives a better prediction. This is not surprising because
the regression on the joint process is identical with a regression performed on a single variable with the complete set
of observations.

3.4.3 First-Order Differential and Laplace Operators

In Figure 6.b we show the same experiment but replace the physical process with a first-order differential operator in
space, which is approximated by finite differences. We again see the more accurate agreement between prediction and
the “true” value when using the joint model. In Figure 7.a we present the results for a Laplace operator with the same
conclusions. In both cases we note the near-perfect fit on the left boundary of process y2 that has no observations.
This is a direct result of information transfer from observations in y1 present at that location.

3.4.4 Quadratic Process

In Figure 7.b we illustrate the results for a quadratic “physics” process: y1 = y22 + η, y2 ∼ N (6, Cse([ℓ2,σ
2
2])) and

η ∼ N (0, Cmat,ν=5/2([ℓη,σ
2
η])). The mean process is set to six in order to limit the observability issues. For this case

we use the high-order closure covariance model introduced in Section 2.2. To illustrate quantitatively the difference
between using a second-order closure as assumed in Lemma 2.1 and the high-order closures assumed in Proposition
2.3, we compare the RMS of the error (RMSE) in the prediction obtained using these two models. When using a linear
covariance model (Lemma 2.1) the RMSE of y1 is 3.40, whereas the high-order model (Prop. 2.3) used in prediction
yields an RMSE of 2.83. Of course y2 has less improvement, 0.31 from 0.29, because the auto-covariance model is
exact; furthermore, an independent fit gives 11.10 for y1 and 1.12 for y2. We argue that these results are reasonable
given the nature of this experiment, that is, the fact that the Normality assumptions are no longer optimal; however,
we note that they are in agreement with our theoretical expectations through an overestimation of the auto-covariance
in the quadratic closure model, as indicated in Fig. 4.
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(a) simple linear model (b) differential model

FIG. 6: Independent fit of two Gaussian processes (grey) and dependent fit for two models: (a) for a simple linear
model: y1 = y2 + η, y2 ∼ N (0, Cse([ℓ2,σ

2
2])), and η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η])) and (b) a differential model

(first-order approximation): y1 = u(x) = g(p(x)) = α ∂
∂xp + η. The dashed line represents the “truth” with noisy

observations denoted by circles. The solid dark line represents the independent fit and the grey shade the point
variance. The blue solid line with blue shade represents the dependent fit.

FIG. 7: Independent fit of two Gaussian processes (grey) and dependent fit for (a) a differential model - Laplace
operator: y1 = u(x) = g(p(x)) = α ∂2

∂x2 p + η, y2 = p ∼ N (0, Cse([ℓ2,σ
2
2])), and η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η]))

and (b) a quadratic model: y1 = y22 + η. The high-order closure is used in the latter experiment. The dashed line
represents the “truth” with noisy observations denoted by circles. The solid dark line represents the independent fit
and the grey shade the point variance. The blue solid line with blue shade represents the dependent fit.
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3.5 Large-Scale Numerical Experiment

In the following section we apply the covariance models described in this manuscript to an inference problem for
geostrophic winds based on data resulting from real regional numerical weather prediction systems. In this case we
have two-dimensional fields. A similar experimental setting was presented in [17, 26], and because of its relevancy
we choose the same type of problem. Nonetheless, by taking a consistent and systematic approach at constructing
our models we argue that the positive results obtained in this study extend to other linear and, when using high-order
closures, even nonlinear processes. We first generate a synthetic data set in order to validate our covariance models
and approach. We then use a real data set from the output of a weather prediction model.

3.5.1 Geostrophic Wind

The geostrophic wind is the atmospheric wind field that results from the balance between the Coriolis effect and the
pressure gradient force [38]. This is a widely used model for describing the wind fields in the upper troposphere. On
a constant pressure surface and on a Cartesian grid, the geostrophic wind follows as

ug = −αu
∂ϕp(x, y)

∂y
, vg = αv

∂ϕp(x, y)

∂x
, (24)

where ug and vg are the geostrophic west-east and south-north wind vector components, respectively; ϕp(x, y) is the
geopotential surface (ϕ = p/ρ, where ρ is the air density) at a given pressure level p, and αu,v is the reciprocal of
the Coriolis force. In Fig. 8 we illustrate the wind speed and geostrophic wind approximation in the top panel at a
pressure level of 500 mb. In the lower panel we zoom-in over central California to illustrate the relative resemblance
between the two fields, but also some discrepancy. We note that in order to obtain the geostrophic wind field in Fig.
8, the scaling αu,v was manually fitted to a constant for the entire domain, whereas in reality this factor varies in
the north-south direction. This approach illustrates two aspects: the differential model is appropriate, and additional
forcing is necessary to account for such discrepancies as represented by the apparent vortex disruption.

3.5.2 Stochastic Model for Geostrophic Winds

The state vector considered for inference is y = [ug, vg,ϕ]
T . The physics-induced relationship becomes[

u
v

]
=

[
ug

vg

]
+Σ , Σ = N (muv,Ku,v) , Ku,v =

[
Kuu Kuv

Kvu Kvv

]
(25)

y1 =

[
ug

vg

]
=

[
(−Ly ⊗ Ix)ϕ
(Iy ⊗ Lx)ϕ

]
=

[
(−Ly ⊗ Ix)
(Iy ⊗ Lx)

]
(I2 ⊗ ϕ) =

[
Luϕ

Lvϕ

]
= g(y2) = g(ϕ) , (26)

where Lx,y is the one-dimensional differential operator given in (24) with respect to the x (west-east) and y (south-
north) directions, respectively, I{x,y} are identity matrices with dimensions given by the horizontal x and y grid points,
and ⊗ denotes the Kronecker product.

We propose the following stochastic model to describe the geostrophic process:

ϕ ∼ mϕ +Mνϕ
(ℓϕ,σ

2
ϕ) , (27)

U = Luϕ+ η , mu = Lumϕ +mη , η ∼ Mνη
(ℓη,σ

2
η) , (28)

V = Lvϕ+ ν , mv = Lvmϕ +mν , ν ∼ Mνν
(ℓν,σ

2
ν) , (29)

where M is a process generated by using Matérn covariance functions. We consider sparse observations obtained
from a synthetically generated data set or the numerical weather model with prescribed additive observational noise
described by Kεuεu = σ2uI , Kεvεv = σ2vI , and Kεϕεϕ = σ2ϕI , which correspond to wind and geopotential retrievals.
A good approximation of these variances may come from the radar and satellite instrumental errors. We will attempt
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FIG. 8: Wind speed, vector, and geostrophic approximation at a pressure level of 500 mb.
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to interpolate the wind and geopotential surfaces using observations with different spatial configurations and densities
by using several covariance model structures.

We consider that the predicted quantities (i.e., subscript star) form the “larger” space. With the test-train mappings
and notation from previous sections we have L∗u = Hu,∗uLu, L∗v = Hv,∗vLv , and Kϕ,ϕ ≡ Hϕ,∗ϕK∗ϕ,∗ϕH

T
ϕ,∗ϕ.

Then joint distribution of the model proposed for the geostrophic winds takes the following form:

M3 = K11 =

 L∗uK∗ϕ,∗ϕL
T
∗u +Kηη +Kεuεu Kuv L∗uK∗ϕ,∗ϕH

T
ϕ,∗ϕ

Kvu L∗vK∗ϕ,∗ϕL
T
∗v +Kνν +Kεvεv L∗vK∗ϕ,∗ϕH

T
ϕ,∗ϕ

Hϕ,∗ϕK∗ϕ,∗ϕL
T
∗u Hϕ,∗ϕK∗ϕ,∗ϕL

T
∗v Kϕ,ϕ +Kεϕεϕ

 ,

(30)

K12 =

 L∗uK∗ϕ,∗ϕL
T
u +Kη,∗η Ku,∗v L∗uK∗ϕ,∗ϕ

Kv,∗u L∗vK∗ϕ,∗ϕL
T
v +Kν,∗ν L∗vK∗ϕ,∗ϕ

Hϕ,∗ϕK∗ϕ,∗ϕL
T
u Hϕ,∗ϕK∗ϕ,∗ϕL

T
v Kϕ,∗ϕ

 , K21 = KT
12 , (31)

K22 =

 LuK∗ϕ,∗ϕL
T
u +K∗η,∗η K∗u,∗v LuK∗ϕ,∗ϕ

K∗v,∗u LvK∗ϕ,∗ϕL
T
v +K∗ν,∗ν LvK∗ϕ,∗ϕ

(LuK∗ϕ,∗ϕ)
T

(LvK∗ϕ,∗ϕ)
T

K∗ϕ,∗ϕ

 , (32)

where Kuv = L∗uK∗ϕ,∗ϕL∗v with the rest of the mixed blocks obtained by applying mappings Hu,∗u and Hv,∗v
accordingly. In this example for simplicity we ignore the other terms that would otherwise occur in the expansion of
Kuv, such as Kϕ,η or Kη,ν. We argue that with sufficient data, one would be able to fit such models; however, this is
not the case or scope in our present numerical experiment.

3.5.3 Proposed Covariance Models

We distinguish three cases that correspond to (i) an independent fit, (ii) a fit using a latent process, where we consider
only wind observations (y1), and (iii) a fit using data from both types of variables. The latent process strategy is similar
to the approach discussed in [25] with a slight error in the geostrophic model; however, in our case we consider kernels
that couple all observables. The third strategy was used in [17, 26]. In this case the authors provide a particularly
specific derivation of the model starting from statistics, whereas our approach starting from the physical constraints
arguably carries more generality.

Independent fit. In this setting we consider that we observe U and V as separate processes and try to fit a surface
through these observations using Gaussian process regression. To this end we consider the following covariance
model:

M2 = K11 =

[
K∗u,∗u +Kεuεu 0

0 K∗v,∗v +Kεϕεϕ

]
,

K12 =

[
K∗u,u 0
0 K∗v,v

]
, K21 = KT

12 ,

K22 =

[
Ku,u 0
0 Kv,v

]
.

We also consider an independent fit of all three quantities. We denote the model by M4. This model is similar
with M2 but contains an extra block on the diagonal that accounts for the ϕ field.

Latent process fit. In this setting we acknowledge that the two components U and V are bound together by the
geostrophic approximation (24), and therefore U and V are components of a joint probability distribution (27)-(29).
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To this end we obtain the following augmented model:

M1 = K11 =

[
L∗uK∗ϕ,∗ϕL

T
∗u +Kηη +Kεuεu Kuv

Kvu L∗vK∗ϕ,∗ϕL
T
∗v +Kνν +Kεvεv

]
,

K12 =

[
L∗uK∗ϕ,∗ϕL

T
u +Kη,∗η Ku,∗v

Kv,∗u L∗vK∗ϕ,∗ϕL
T
v +Kν,∗ν

]
, K21 = KT

12 ,

K22 =

[
LuK∗ϕ,∗ϕL

T
u +K∗η,∗η K∗u,∗v

K∗v,∗u LvK∗ϕ,∗ϕL
T
v +K∗ν,∗ν

]
.

The fit of the joint process. This case employs model M3, which corresponds to a regression of the entire data set
(30)-(32).

3.5.4 Synthetic Example

We first consider a synthetic example with the following hyperparameters:

mϕ = 0 , νϕ = 5/2 , ℓϕ = 10 , σ2ϕ = 302 , Kεϕ,εϕ = 4I , (33)

mη = 0 , νη = 5/2 , ℓη = 1 , σ2η = 2 , Kεu,εu = I , (34)

mν = 0 , νν = 5/2 , ℓν = 1 , σ2ν = 2 , Kεv,εv = I , (35)
αu = 1.4 , αv = 1.2 . (36)

The distribution of the complete model M3 with these hyperparameters is considered the reference distribu-
tion and denoted by M∗. We extract two samples from M∗: the first is used for fitting the hyperparameters of
models M{1...4}, termed calibration sample, and the second sample, termed validation sample, is used later in a
cross-validation experiment. The latter sample is not used in the training phase.

We consider a comprehensive experimental setting that includes two sets of randomly distributed observations in
space: a relatively sparse set and a dense one. Furthermore, we consider a secondary experiment in which we consider
most of the observations of y1 to be on the east side (with probability 0.8) and for y2 on the west side with the same
probability. This last setting increases the amount of information transfer between fields y1 and y2, and therefore is
expected to increase the discrepancy between models that take into account the physics-induced covariance structure
and models that treat the two outputs independently.

In all experiments we show the RMS of the error between predictions and the real value, excluding observed
locations. We also show the log-likelihood of the predictions; however, because the covariance models are different
and the hyperparameters have different meanings across models, the log-likelihood value has little significance. One
exception is when models M∗ and M3 are compared, because they have the same model structure. In Table 1 we
show the results from randomly spaced observations. We note that the RMS of the error are larger for the independent
fit settings M2 and M4. Model M∗ gives the best fit, which is to be expected since this is the true distribution. The
complete model M3 performs slightly better than the latent process model M1 because of the additional information
conveyed by y2 observations.

We now consider a more extreme case in which the observations are relatively split: y1 observations are biased
toward the eastern side and y2 observations more toward the western side. The results are shown in Table 2. As
expected, we observe a far better performance of the complete model M3. We note a larger discrepancy between M3

and the latent process model M1 because the latter does not observe y2 and therefore has relatively few observations
on the western side.

3.5.5 Real-Data Test Case

We now consider the output of a real numerical weather prediction simulation over North America. We choose a
region that is 54 × 30 grid points with a horizontal resolution of 25 km. In Table 3 we show the fit with the four
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TABLE 1: Predictive marginal log-likelihood values and RMSE (excluding observed locations). This experiment
corresponds to the synthetic test case with sparse observations. Observations are random in space for the first two top
sets of results. M∗ [y1y2] represents the fit with the exact model. M2 [y1 ind] and M4 [y1y2 ind] are models that
treat the fields independently; the former observes only the wind field. M1 [y1] and M3 [y1y2] represent the correct
model structure and are fitted by using wind for the former and all fields for the latter.

Sparse Random Observations 0.05% of U , V , and 0.15% of ϕ
Calibration sample Validation sample

Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M∗ [y1y2] -7798 2.07 1.87 2.47 -7818 2.10 1.94 2.65
M2 [y1 ind] -5865 3.31 2.73 - -5847 2.69 2.60 -

M4 [y1y2 ind] -9561 3.34 2.76 3.02 -9527 2.64 2.59 2.91
M1 [y1] -5606 2.49 2.41 - -5662 2.56 2.41 -

M3 [y1y2] -7988 2.33 2.00 2.86 -8026 2.36 2.14 2.96
Dense Random Observations 0.15% of U , V , and 0.25% of ϕ

Calibration sample Validation sample
Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M∗ [y1y2] -7041 1.78 1.63 1.98 -7051 1.81 1.66 1.97
M2 [y1 ind] -5220 2.36 2.16 - -5209 1.99 2.12 -

M4 [y1y2 ind] -8295 2.34 2.16 2.43 -8242 1.98 2.12 2.39
M1 [y1] -4840 1.92 1.77 - -4880 1.84 1.80 -

M3 [y1y2] -7125 1.85 1.68 2.05 -7166 1.88 1.70 2.03

TABLE 2: Predictive marginal log-likelihood values and RMSE (excluding observed locations). Observations are
random in space but for y1 they are predominantly on the east side of the plane with probability 0.8 and on the west
side for y2 with the same probability. M∗ [y1y2] represents the fit with the exact model. M2 [y1 ind] and M4

[y1y2 ind] are models that treat the fields independently; the former observes only the wind field. M1 [y1] and M3

[y1y2] represent the correct model structure and are fitted by using wind for the former and all fields for the latter.

Sparse Random Observations 0.05% of East U , V , and 0.15% of West ϕ
Calibration sample Validation sample

Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M∗ [y1y2] -8146 2.80 2.29 4.89 -8133 2.49 2.38 4.62
M2 [y1 ind] -7010 5.56 3.61 - -6917 3.90 3.84 -

M4 [y1y2 ind] -10627 5.58 3.83 9.15 -10478 4.02 4.66 15.18
M1 [y1] -5980 4.70 3.18 - -5973 3.72 3.28 -

M3 [y1y2] -8349 2.93 2.44 5.09 -8373 2.88 2.67 6.06
Dense Random Observations 0.15% of East U , V , and 0.25% of West ϕ

Calibration sample Validation sample
Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M∗ [y1y2] -7772 2.20 1.85 3.23 -7767 2.20 2.00 2.98
M2 [y1 ind] -5620 4.08 3.37 - -5644 2.94 3.09 -

M4 [y1y2 ind] -9487 4.08 3.28 5.77 -9399 2.91 2.89 4.45
M1 [y1] -5224 2.98 2.57 - -5277 2.39 2.42 -

M3 [y1y2] -7947 2.33 1.97 3.85 -7987 2.32 2.18 3.74
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TABLE 3: Predictive marginal log-likelihood values and RMSE (excluding observed locations) for the real-data test
case with large and small observation noise. The observation density is 0.05% of U , V and 0.15% of ϕ. M2 [y1 ind]
and M4 [y1y2 ind] are models that treat the fields independently; the former observes only the wind field. M1 [y1]
and M3 [y1y2] represent the correct model structure and are fitted by using wind for the former and all fields for the
latter.

Observation Noise: σ2ϕ = 132, σ2{U,V } = 2

Calibration sample Validation sample
Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M2 [y1 ind] -5475.19 1.49 1.44 0.00 -5625.26 1.68 1.46 -
M4 [y1y2 ind] -15734.91 1.49 1.44 40.75 -16154.14 1.68 1.46 47.75

M1 [y1] -4938.89 1.44 1.49 0.00 -5016.47 1.66 1.34 -
M3 [y1y2] -16359.38 1.44 1.59 37.37 -17131.86 1.66 1.31 28.72

Observation Noise: σ2ϕ = 82, σ2{U,V } = 2

Calibration sample Validation sample
Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M2 [y1 ind] -5475 1.49 1.44 - -5625 1.68 1.46 -
M4 [y1y2 ind] -14200 1.46 1.39 33.55 -14363 1.65 1.40 44.74

M1 [y1] -5289 1.43 1.38 - -5384 1.62 1.28 -
M3 [y1y2] -13129 1.43 1.38 22.02 -13713 1.63 1.28 29.48

models for the predicted fields from the sample that was used for calibrating the process as well as a validation sample
for different noise levels. The validation sample corresponds to the same fields advanced six hours ahead. Because
in this case we do not have a reference distribution, we focus more on the RMS of the error between the sample
that is used for fitting the hyperparameters (on the left) and the performance on the new sample. A particularly good
improvement can be noted in the prediction of ϕ∗.

Although the results for the large observational noise do not mirror precisely the ones obtained in the synthetic-data
case, we note that reducing the noise level (results in the lower part of the table) lead to the same conclusions that were
drawn in the previous section. We adopted several levels of simplifications in the covariance models and calibration
strategies employed in the real data case. For instance, the Coriolis force varies in the north-south direction; however,
αu and αv are kept constant across the entire domain; moreover, all the processes are Matérn with a fixed smoothness
level of ν = 5/2. We expect more accurate results to be obtained by adding more flexibility to the inference process;
however, this is the scope of a different study.

To give a slightly more qualitative representation of the results, we illustrate in Figure 9 the geopotential error sur-
face corresponding to predictions made on the validation sample in Table 3 using the independent fit M4 [y1y2 ind]
and M3 [y1y2] models with σ2ϕ = 82, σ2{U,V } = 2. A general and significant reduction in the prediction error can be
noticed when using the physics-based model with a significant level on the western boundary.

3.5.6 Validation of Covariance Models

We propose two approaches to validate the calibrated models. The first approach is based on a cross-validation
strategy, where we draw a second sample from the same distribution or process and perform the regression by using
the models calibrated on the initial sample. In the synthetic data case we use a different seed, and in the real-data
experiment we use a different time snapshot of the geopotential and wind fields.

In a second validation approach we take advantage of the fact that in the synthetic data experiment we already
know the true distribution, and therefore we can construct the true Gaussian process accordingly (30)-(32) and with
hyperparameters given by (33)-(36). We then compute the Kullback-Leibler (KL) divergence between the distributions
resulting from the different models calibrated with the data and the true distribution. This gives us a “measure” of
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FIG. 9: Geopotential error surface [m2s−2] corresponding to predictions made on the validation sample in the real-
data experiment (see Table 3 for the independent fit M4 [y1y2 ind] and M3 [y1y2] in the case where σ2ϕ = 82,
σ2{U,V } = 2).

the distance between the experimentally calibrated distributions and the true one. The KL divergence between two
probability densities that are Normally distributed, p = N (µp,Σp) and q = N (µq,Σq) is given by

DKL(p||q) =
∫

p(x) log
p(x)

q(x)
dx = (37)

1

2

(
tr(ΣpΣ

−1
q ) + (µq − µp)TΣq(µq − µp)− ln

(
|Σp|
|Σq|

)
−N

)
,

where N is the dimension of the problem.

First Approach: One-Way Cross-Validation. The results for the first approach have already been discussed to a
certain extent. In Tables 1–3 we illustrate (in the right set of columns) the validation sample results, which correspond
to a new sample from the same distribution in the synthetic-data case or to a different time snapshot in the real data
case. This validation sample was not used in fitting the hyperparameters. In all cases when using the appropriate
covariance structure M1 and M3 maintains an advantage over independent fit, which indicates their robustness.
Note the columns that correspond to the validation sample in Table 2 and the fit of ϕ in Table 3. Also, there is no
significant change in the RMS of the error between the calibration sample and the predicted one, which may discard
the possibility of overfitting the models.

Second Approach: KL Divergence Experiment. Now we compute the KL divergence (37) for the synthetic data
case, where q takes the place of the known distribution with hyperparameters (33)-(36) and p takes the place of
distributions generated by M{1···4} and inferred parameters. In Table 4 we show the KL divergence between the four
models M{1···4} and the true distribution denoted by M∗. By DKL(Mk||M∗), k = 1, . . . 4, we indicate the KL
divergence of each model with respect to the true distribution, and by DKL(

∫
Mk dϕ||

∫
M∗ dϕ) we indicate the

marginal with respect to ϕ. The latter is used to compare models that include ϕ with the ones that do not; for instance
this allows us to compare directly M1 and M3. These results correspond to the models presented in Table 1; similar
results are obtained for the models obtained in Table 2. We note the relative closeness between M1 and M3, a fact
expected from the forecast fit result.

4. DISCUSSION

The covariance structure has a large impact on the uncertainty quantification and forecast efficiency. Auto-covariance
and cross-covariance models are needed to represent joint distributions of random fields that may be generated from
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TABLE 4: Kullback-Leibler divergence between the four models M{1···4} and the true distribution M∗. By
DKL(Mk||M∗), k = 1, . . . 4 we indicate the KL divergence of each model with respect to the true distribution
and by DKL(

∫
Mk dϕ||

∫
M∗ dϕ) we indicate the marginal with respect to ϕ. The later is used to compare models

that include ϕ with the ones that do not. The results are based on the K22 block.

Sparse Observations Dense Observation
Model DKL(Mk||M∗) DKL(

∫
Mk dϕ||

∫
M∗ dϕ) DKL(Mk||M∗) DKL(

∫
Mk dϕ||

∫
M∗ dϕ)

M2 [y1 ind] - 4662 - 4197
M4 [y1y2 ind] 50564 4320 34541 4016

M1 [y1] - 746 - 127
M3 [y1y2] 3217 798 778 215

physical fields that have different meanings or interpretations but are constrained by physical laws. In particular,
having a consistent covariance structure is known to be important for prediction when performing inferences on
multidimensional process with partially known relationships among different variables.

In this study we propose covariance models that are consistent with the underlying physical process that generated
the data. The covariance model describes how the outputs co-vary and may have nontrivial forms when relating
different physical quantities. This study is geared toward covariance models that describe data obtained from processes
that obey at least a partially known underlying physical process. With such a suitable covariance structure, one can
make predictions using Gaussian process regression strategies or employ them in other circumstances to describe
uncertainties in models, modeling, and data sets.

We develop analytical covariance functions that are consistent with several physical processes. In particular,
we focus on modeling the geostrophic wind in the atmosphere, and to that end we employ a differential process that
corresponds to the known physical constraint. We consider Gaussian process regression experiments with a covariance
model that has the correct physically consistent structure, which demonstrates significant improvements in the forecast
efficiency. This strategy is validated on various synthetic and real data sets. The analytic covariance functions are
validated by comparing results obtained with the models introduced in this study and covariance structures obtained
through sampling strategies.

We introduce new nonstationary covariance models that are generated directly through the physical process. For
instance, we use a differential model on a nonuniform grid to generate nonstationary covariance kernels. These
models have properties that are appropriate for processes that take place on adaptive grids or have various degrees of
anisotropy.

We have augmented our analysis to include covariance models that are able to effectively describe nonlinear
processes by including high-order correction terms, which can be regarded as high-order moment closure terms. We
have demonstrated that such a strategy, albeit not an optimal one for our particular experiment, can be very important
for nonlinear models by comparing the fine approximation of the covariance structure resulting from a nonlinear
process with low- and high-order closure assumptions. The latter proves to be significantly more accurate.

Gaussian processes are known to be practical as long as one can perform the Cholesky decomposition of the
covariance matrix, but for very-large scale data sets this approach may become a problem limiting their applicability.
In this study we do not fully address the computational aspects that are involved in the Gaussian process regression;
however, recent results [49] demonstrate that Gaussian process analysis can be carried out in a matrix-free fashion in
a way that scales very well and, therefore, can be applied to large-scale problems.
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